If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1+3x^2=2
We move all terms to the left:
1+3x^2-(2)=0
We add all the numbers together, and all the variables
3x^2-1=0
a = 3; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·3·(-1)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*3}=\frac{0-2\sqrt{3}}{6} =-\frac{2\sqrt{3}}{6} =-\frac{\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*3}=\frac{0+2\sqrt{3}}{6} =\frac{2\sqrt{3}}{6} =\frac{\sqrt{3}}{3} $
| 2x+4x+4=40 | | 4=77x=44x+40 | | 4x=5=-37-2x | | 9x-20=8x+8 | | 5(8x-5=-185 | | 3z/10+5=-8 | | 2x-(x-(3/4-4))=13/16 | | 5/8y=2/5y+3 | | x3¡7=10 | | 1/x+4+1/x=1/2 | | 12y+40=20 | | x/7+7=-3 | | (5w+9)(1+w)=0 | | z/10+5=8 | | 5/x+5+5/x=2 | | 21y+4=20 | | 2r-5=4+10 | | 3=(8x+1)÷2 | | 13x-15=12x+13 | | 34-a=7 | | 4x+8=44-9x | | 5-4(t-3)=17 | | 5–4(t-3)=17 | | X2+y2-6y=5 | | (5x+1)/3-1=(×-5)/7 | | 12s+4=9 | | 12s+4=9+11s | | 9b-10=9 | | 7x,-3/2=4x+5/3 | | 7x+19÷2=13 | | 9b-10=8b+9 | | 15x^2+43x+18=0 |